Deep Visual Attention Prediction
نویسندگان
چکیده
منابع مشابه
Visual Attention Guided Deep Imitation Learning
When an intelligent agent learns to imitate human visuomotor behaviors, it may benefit from knowing where the human is allocating visual attention, which can be inferred from their gaze. A wealth of information regarding intelligent decision making is conveyed by human gaze allocation; hence, exploiting such information has the potential to improve the agent’s performance. With this motivation,...
متن کاملProgressive Attention Networks for Visual Attribute Prediction
We propose a novel attention network, which accurately attends to target objects of various scales and shapes in images through multiple stages. The proposed network enables multiple layers to estimate attention in a convolutional neural network (CNN). The hierarchical attention model gradually suppresses irrelevant regions in an input image using a progressive attentive process over multiple C...
متن کاملHuman Trajectory Prediction using Spatially aware Deep Attention Models
Trajectory Prediction of dynamic objects is a widely studied topic in the field of artificial intelligence. Thanks to a large number of applications like predicting abnormal events, navigation system for the blind, etc. there have been many approaches to attempt learning patterns of motion directly from data using a wide variety of techniques ranging from hand-crafted features to sophisticated ...
متن کاملThe Effect of Distortions on the Prediction of Visual Attention
Existing saliency models have been designed and evaluated for predicting the saliency in distortion-free images. However, in practice, the image quality is affected by a host of factors at several stages of the image processing pipeline such as acquisition, compression and transmission. Several studies have explored the effect of distortion on human visual attention; however, none of them have ...
متن کاملAttention Prediction in Egocentric Video Using Motion and Visual Saliency
We propose a method of predicting human egocentric visual attention using bottom-up visual saliency and egomotion information. Computational models of visual saliency are often employed to predict human attention; however, its mechanism and effectiveness have not been fully explored in egocentric vision. The purpose of our framework is to compute attention maps from an egocentric video that can...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Image Processing
سال: 2018
ISSN: 1057-7149,1941-0042
DOI: 10.1109/tip.2017.2787612